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ABSTRACT

We wish to determine how effectively a lubricant film prevents

metallic contact between two rolling surfaces (such as in ball bear-

Sings) as a function of surface roughness parameters. The param-

eters considered are the spectral moments of the two-dimensional

surface obtained by superposition of the two rolling surfaces. We

consider the peak height distribution, estimation of one-dimensional

profile spectral moments, and the estimation of two-dimensional

surface moments from several profile measurements. Also given is

an asymptotic relation between the mean film thickness and contact

occurrences.
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SUMMARY

The basic problem under consideration is that of describing the

behavior of two rolling surfaces separated by a thin film of lubricant.

We discuss a procedure for determining the mean film thickness from

experimentally obtained electrical contact measurements. We are

specifically concerned with rolling surfaces such as occur in ball

bearings.

The ball surfaces are represented as Gaussian random processes.

The development first considers the situation where contact occurs

along a one-dimensional line segment. Both exact and approximate

relations are developed between the mean film thickness and the

amount of electrical contact. The development is then extended to

the situation of contact over an area. An approximate relationship

between mean film thickness and electrical contact is developed.

The approximation presented involves the determination of the

probability density function of peak heights on a random surface and

the density of such peaks.

One method of obtaining surface roughness information is to ob-

serve relative surface height along one-dimensional profiles. We

discuss the estimation of spectral moments of these one-dimensional

processes. We then discuss a method of combining this information

from several profiles in different directions to compute the spectral

moments of the two-dimensional process.
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We conclude with a brief discussion of the need for filtering the

profile process in order to obtain better agreement with the contact

process.

INTRODUCTION

The basic problem under consideration is that of describing the

behavior of two rolling surfaces separated by a thin film of lubricant.

This situation arises quite naturally in the study of ball bearings.

The purpose of the lubricant is to separate the metallic surfaces in

order to prevent bearing wear and thereby lengthen the effective life

of the bearing. This report discusses a means of experimentally

determining the mean film thickness from electrical contact measure-

ments obtained by an experimental technique described in the first

section.

The proposed solution of this problem involves representing the

ball surfaces as Gaussian random processes as was done in refer-

ence 1. Supporting data for this is presented in Williamson (ref. 2).

We begin the development by first considering the hypothetical situa-

tion where contact takes place along a one-dimensional line segment.

That is, we consider two one-dimensional stationary and ergodic

Gaussian random processes whose mean levels are separated by a

lubricant film of mean thickness h. We then develop a relationship

between h and electrical contact occurrences. An approximation

is presented for the case when the mean film thickness is large com-

pared to the surface roughness. This part of the development is

similar to that of reference 1 except that an erroneous derivation in

reference 1 is corrected.

- We then extend the study to the real problem where contact actu-

ally occurs over an area. That is, we are now concerned with two

two-dimensional stationary and ergodic random processes. This

presents considerable difficulties in problem. definition and analysis.

An approximation is developed for the case when the mean film
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thickness is large compared to the surface roughness. In order to

achieve this result a number of results from and extensions of the sub-

ject of "statistical geometry" as developed by Longuet-Higgins (refs.

.3, 4, and 5) are presented. Also used are some results from Nayak

(ref. 6), Cramer and Leadbetter (ref. 7), and Kac and Slepian

(ref. 8).

The approximation developed provides an equation for the electrical

no-contact time fraction as a function of the mean film thickness, Hert-

zian contact area, and surface roughness parameters. This equation

involves the probability density function of peak heights on a random

surface and the number of peaks per unit surface area.

One method of obtaining surface roughness information is to ob-

serve relative surface heights along one-dimensional profiles. We dis-

cuss three methods of estimating the spectral moments of the resulting

one-dimensional processes. The electrical contact prediction is a

function of the spectral moments of the two-dimensional surface ob-

tained by superimposing the two rolling surfaces. Thus a method of

combining information from several profiles in different directions to

compute the spectral moments of the two-dimensional process is dis-

cussed.

We conclude with a brief discussion of the need for filtering the

profile processes in order to obtain better agreement with the contact

process.

It is appropriate to remark at this point that we consider only a

simplified version of the real problem. Some of the complications of

real life are bearing spin, bearing sliding, viscosity effects, non-

uniform lubricant thickness, and several others. A survey of elasto-

hydrodynamic lubrication and related topics is presented by Tallian

(ref. 9).
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ONE -DIMENSIONAL ANALYSIS

Relation of Film Thickness and Surface Roughness

to Electrical Contact Occurrences

The situation is represented in figure 1. There are two balls, con-

veniently referred to as the upper ball and the lower ball. Under a con-

dition of load, because of local elastic deformation of the ball surfaces,

there is a region of contact where the surfaces can be considered as

locally parallel. This region is called the region of Hertzian contact

and is illustrated in further detail in figure 2.

The authors of reference 1 have shown that, within the Hertzian

area, the two surfaces can be closely approximated by two Gaussian

random processes separated by an average distance h which repre-

sents the average lubricant film thickness. The upper surface is de-

noted Zu(x ) . We use the notation Zu(x ) - N(", Cu(T)) to denote that

Zu(x) is distributed as a Gaussian random process with mean iu and

autocovariance function (acvf)Cu(T). The lower surface is denoted by

Z l (x) and we have Z1 (x) - N(j , C, (7 )). We assume both Zu and

Z l to be stationary and ergodic. The distance between the surfaces

at any point x is described by Zu(x) - Z l (x). Thus, we consider

the composite process defined by

t(x) = Zu(X) - Z 1 (x) - h (1)

This process is illustrated in figure 3. We have (Bendat, ref. 10)

t(x) - N(O, C(-))

where C(7-) = Cu(-) + C l (-). Note that C(0) = 2 , the variance or

mean square of the process. Whenever (x) < -h, the surfaces are

in the state of metallic contact. Obviously, the physical process can-

not have t (x) < -h. We assume that (x) < -h corresponds to a state
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of elastic deformation of the surface asperities, and that the process

of elastically deforming and reforming asperities has no appreciable

effect on the characterization of the surfaces in contact by equa-

tion (1).

In order to determine, experimentally, when the surfaces are in

metallic contact, it is possible to employ the electrical contact method

described in reference 1. We describe this technique briefly as fol-

lows.

With reference to figure 1, we might apply a voltage across the

upper and lower balls. Thus, whenever the balls are in metallic con-

tact, a current flow will occur through the circuit. A continuous re-

cording of the voltage will then provide a record of whenever the balls

are in metallic contact. It is important to note that no voltage (i. e.,

potential) will be recorded whenever there is metallic contact any-

where within the region of Hertzian contact. A voltage will be ob-

served only for those time intervals such that the lubricant film is un-

broken throughout the region of Hertzian contact.

We assume that the surfaces are rolling against each other at a

constant velocity with no sliding or spinning. Then if a voltage-

averaging device is used during a test, the time-averaged fraction

of the applied voltage is a function of the distance-averaged fraction

of rolled-over-distance which corresponds to the state of metallic con-

tact. We denote the distance-averaged fraction of electrical contact

as Tc. The no-contact fraction is thus given by 1 - Tc* We wish to

derive a relation between the average film thickness h and the con-

tact fraction Tc so that experimental measurements of average volt-

age may be used to estimate h.

Derivation of Contact Fraction

We begin by describing what happens during an electrical no-

contact occurrence. Let the length of the Hertzian contact be denoted

by d. For each excursion of 4(x) above the level t(x) = -h, electri-
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cal contact is not broken until the left edge of the Hertzian contact in-

cludes the first point at which (x) > -h. That is, electrical contact

is not broken until the right edge of the Hertzian contact is d units of

distance past the first point for which (x) > -h. Electrical contact

is reestablished as soon as the right edge of the Hertzian contact in-

cludes the first point for which (x) = -h again. Thus, if the excur-

sion above -h is of length L, there is a loss of electrical contact

only for the length (L - d)+ where (x)+ = MAX { x, 0 }.

Define the following random variables (rv) associated with the

random process t(x):

6a(h) rv denoting lengths of excursions of t (x) above

level -h

Na(t, h) rv denoting number of crossings of t (x) from

below -h to above -h in interval (0, t)

Na(t, h 16 5 d) rv denoting number of crossings of t (x) from

below -h to above -h in interval (0, t) where

excursion is of length less than or equal to d

Na(t , h 6 > d) rv denoting number of crossings from below -h

to above -h where the excursion is of length

greater than d

N(t, h) rv denoting total number of crossings of level -h

in either direction

Let the random variables 6b(h), Nb(t, h), Nb(t , h 6 - d), and

Nb(t, h 6 > d) be defined similarly for excursions and crossings from

above -h to below -h. Cramer and Leadbetter (ref. 7, ch. 11)

present rigorous proofs that these can, in fact, be treated as random

variables. The following developments are presented in a heuristic

manner but can be made rigorous through application of the results

in reference 7.
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We denote the distribution functions of 6a(h) and 6b(h) by Ah(6a
and Bh(6b), respectively. Although there has been much research

directed toward identifying these distributions, they are not known ex-

cept for special values of h and certain forms of the acvf C(T) (e. g.,

see Slepian, ref. 11). We assume the expectations of 6a(h) and 6b(h)

exist and denote them, respectively, as ta and tb.
Of primary interest are the two conditional expectations TN and

TC defined by

TN = E [6a(h) 6a(h) >d

TC = E 6a(h) 6a(h) - d

where d is the length of the Hertzian contact. Since 6a(h) is a posi-

tive rv, we have

ta TNPr [6a(h) > d + TCPr [6a(h) : d

For sufficiently large t, the following statements are true ( de-

notes approximately equal):

Na(t, h) P Nb(t, h) 1 N(t,h)
2

Na(t, hI 6a(h) > d) Pr Sa(h) > d

Na(t, h)

Na(t, h 6a(h) -d) Pr6 b)

Na(t, h) a b -
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Because of the stationarity and ergodicity assumptions, the approxi-

mate equalities approach equality as t - oo. Likewise, the following

derivations involving approximate equalities become exact in the

limit as t - oo. Thus, for sufficiently large t, the total no-contact

distance is approximated by the number of excursions above the

level -h which last longer than d, multiplied by the average amount

by which such excursions exceed Ad. Thus,

Na (t, h 6 a(h) > d) N- d)1-T a\c

But we have

t Na(t, h)t a + Nb(t,h)tb

S(ta + b N(t,h)

Thus

1 T N a (, h I6a (h) > d)T d)1 -Tc-
(ta + t ) N(t,h)

(ta 2

(TN - d) Na t, h 6a(h) > d

ta + tb Na(t, h)

SN- Pr 6a(h) > d
ta + tb

E a(h) 6a(h)> d - d

F Pr F6a(h) > d] (2)
r ._.I _ r _" -
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In order to utilize equation (2), we must know the distribution of 6a(h)

and the expectation of 6b(h). In general, these are unknown. There

are some asymptotic results for 6b(h) as h - o. Cramer and

Leadbetter (ref. 7) also have a number of results concerning the expec-

tation of the excursion length which are exact. It must be noted that

these exact results are, unfortunately, inapplicable since the quantity

of interest is E(L - d)+ , not E(L). Equation (2) reduces to the ex-

pression derived in reference 1 when the excursion lengths are assumed

to be exponentially distributed. This assumption is open to question

although it is true in the limit as h - c.

Computational Method as h Approaches

One of the primary purposes behind studying the EHD process is

to design bearing systems where there is little or no metallic contact

between surfaces. This implies that primary concern be given to the

processes where h is large compared to the surface roughness. That

is, where h/o is large.

For this situation some results from Cramer and Leadbetter

(ref. 7) and from Rice (ref. 12) and Kac and Slepian (ref. 8) are valu-

able. These authors consider (1) the distribution of the lengths be-

tween successive upcrossings of a high level and (2) the distribution

of the lengths of excursions above a high level. Since the Gaussian

process is symmetric about the mean, it is evident that simular results

apply to excursions and crossings below a low level.

With regard to item (1), let F (x) denote the distribution function

of the interval between successive downcrossings of the level t(x) = -h,

and let 1/0 c denote the mean of this distribution. It is shown in refer-

ence 7 that
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=l-U

limF, -1-x
h-ch-.oo c

= Pr (the interval between one downcrossing and the next

of t(x) = -h is -x/O )

Since

-C"(O) e-h 2 /2

27T

we have

0c - - 0

c h -o

Hence, the expected length between downcrossings increases rapidly

and the stream of downcrossings becomes Poisson in nature.

With regard to item (2), let Fe(x) denote the distribution function

of the lengths of excursions below the level (x) = -h and let 6 e denote

the mean of this distribution. Then it is shown in reference 7 that

lim Fe (0ex ) = 1 - exp 2
h - oo (L

= Pr (excursion length is 5 0x)

Since for large h

we2h 1/2

we have
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0 ->0

e h- oo

Hence, the expected length of the excursion decreases rapidly.

These two results may now be combined to give a limiting expres-

sion for Tc. In particular, for sufficiently large h, we will have ex-

cursions below -h occurring quite infrequently; and each excursion

causes an electrical contact whose duration will be, on the average,

d + 0e. Thus, for sufficiently large h/a and t,

T Nb(t, h)(d + 0e)

c t

We note that Rice (ref. 13) has shown

Nb(t, h) 1 F C"(0) 1/2 F-h 2
E t - exp iL t Lc() 2C(0)

and hence

1 _ 1/2 F 2
T 7 exp d+ ec §TLe)C ( 0e

L2~o
Since C(0) = a2 , the variance of the Gaussian process, this equation

may be rewritten and solved in terms of h/a. In order to simplify this,

we assume 0 e is small relative to d so that

ln -1/2 2

ln Tc = ln §d Lc??(i 1 1(h)2
T 2 2()
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or

1/2

- - 1/2
h t--In d -C (0)h = 2__" I d (

or T 7T

TWO-DIMENSIONAL ANALYSIS

Derivation of Contact Fraction

At this point we make the observation that the Hertzian region is

(for two balls) a circular area. The authors of reference 1 began

their development with the assumption that the Hertzian region is an

arbitrarily narrow and approximately rectangular area. They then

developed what is essentially a one-dimensional theory. After con-

sidering the one-dimensional theory, they then made a rather weak

heuristic generalization to the two-dimensional theory.

The results of Nayak (ref. 6) show that a naive analysis assuming

that a profile trace in a single direction may be used directly is erro-

neous. He shows how the two-dimensional moments may be estimated

from a one-dimensional trace under the assumption of statistical iso-

tropy. Both Nayak (ref. 6) and Longuet-Higgins (refs. 3, 4, and 5)

consider such statistical descriptions as distribution of maxima and

minima, distribution of peak heights, mean summit curvature, and so

forth. Longuet-Higgins also discusses a method of determining a se-

quence of estimating functions which converge to the two-dimensional

spectrum.

The statistical problem requiring solution before electrical contact

analysis can be rigorously applied is now outlined. A complete solu-

tion to this problem is yet to be developed. In fact, an appropriate

formulation would be useful.
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The composite process of interest can be described similarly to
equation (1) as

((x,y) = Zu(x,y) - Z 1 (x,y) - h (4)

where

(x, y) are the coordinates of the reference plane

Zu(x, y) - N (AU, Cu(Tx, Ty

Z 1 (x, Y) - N(, C l (Tx, Ty)

and hence

((x, y) - N(O , C(Tx, Ty

where

C (TX, ry) = Cu(rx, Ty) + C l (x, y)

and C(0, 0) = 2 , the variance or mean square of the process.

Figure 4 presents a visualization of the metallic-contact areas in

the plane parallel to the (x, y) plane at level -h. For simplicity, we

assume the x-axis corresponds to the direction of rolling. The area

over which the Hertzian area passes as the surfaces roll over each

other is bounded by the two horizontal dashed lines denoted y = Y1
and y = Y2 . The areas for which ((x, y) < -h are indicated by the

enclosed dotted regions. For simplicity, we assume that the Hertzian

area is circular.

The left circle corresponds to the position of the Hertzian area

when electrical contact is first broken. The right circle corresponds
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to the position of the Hertzian area when electrical contact is first made

after passing over the "hill. "

From figure 4 we see that the quantity whose distribution we need

to known is X. Since the distribution of X appears too complicated

to derive at the current state of knowledge concerning two-dimensional

random processes, we will consider a potentially useful approximation

for the case when h/o is large.

Computational Method as h Approaches o

As h/u gets large we might expect a similar asymptotic Poisson

character of the number of "valleys" to occur in the two-dimensional

process as occurs in the one-dimensional process. This point should

be verified. In this case, the metallic-contact occurrences are more

appropriately illustrated by figure 5. This figure presents a visualiza-

tion of the metallic-contact areas in the plane t (x, y) = -h. The areas

for which t(x, y) - -h are indicated by the enclosed dotted regions.

The area over which the Hertzian area passes as the surfaces roll over

each other is bounded by the two horizontal dashed lines denoted y = Y1
and y = Y 2 . The dashed circle on the left of the region denoted I cor-

responds to the position of the Hertzian area when electrical contact is

first made. The point (xm, Ym) denotes the coordinates of the point

where contact is first made. The dashed circle to the right of the

region I corresponds to the position of the Hertzian area when elec-

trical contact is finally broken. The point (xb yb) denotes the coor-

dinates of the point where contact is first broken. We let X denote

the difference xb - xm. If X is relatively small compared to the

diameter of the Hertzian area, we may introduce the following approxi-

mation. It is reasonable to expect ym and Yb to be quite highly and

positively correlated. Thus, assume ym and Yb are perfectly corre-

lated and that ym is uniformly distributed over the vertical distance

bounded by y = Y 1 and y Y 2 . In this case we have
.2
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E(L) = 2E(L m ) + E(X)

2 E(L m)

If the shape of the Hertzian area and its dimensions are known, it is a

simple matter to compute E (L m).

Let Dsum denote the expected number of summits per unit area

and p(Q*) denote the probability density function of the summit heights,

, in the composite process defined by (x, y). Since the area over

which the Hertzian region passes is of width w = Y1 - Y 2 , we obtain

the expected number of summits occurring within the strip per unit

distance along the x-axis as wDsum . The probability that two peaks

occur within the Hertzian region is negligible by the Poisson nature of

the peak occurrences. The average fraction of contact distance Tc

is thus given by multiplying the expected number of summits that ex-

ceed the level h per unit distance along x, times the average distance

contact is maintained for each excursion. That is

Tc D r su p(*)dt 2 E(Lm) (5)

Peak Height Probability Density Function

The density function p( *) is really a conditional density of the

surface height conditioned on the event that the point is a summit.

Since the conditioning event has zero probability, great care must be

exercised in the definition of the conditional probability density. This

has been discussed by Kac and Slepian (ref. 8).

Nayak (ref. 6) presents a derivation of p(Q*). The derivation

presented here shows that the results correspond to a "horizontal

window" conditional density as defined by Kac and Slepian. This is

quite important, as only "horizontal window" arguments lead to the

pdf possessing the ergodic property. Let
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4 = (x, y)

a2
t 1 a 2 t(x,y)

ax

a2

t2 - k (x, y)axay

2
t 3 - t (x, y) (6)

ay

5= 8 (x, y)
Sax

t 6 =- a (x, y)
Say

zW= [kj'2,t3,t40 5,t6

Since (x, y) is assumed to be a stationary and ergodic Gaussian
process, there is an autocorrelation function R(Tx, Ty) and a spectral

density function j (ox' 'Py) associated with the process. The function

R(Tx , Ty) is defined by

C(TX,'TY) 1 )

R(Tx , Ty 2 2 E (tx + Tx, ty y x(tx' ty

A duality between. R(Tx,T y) and of ( ox, y ) is defined by
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00 00

R(Tx, y) = - ei(Txfx+ y y (x' y)dpxdoy
-00 -00

and

00 00

e (°x , -y) -0 e i(TX y y R(x, y)dxdry
-o -oO

The spectral moments of are defined by

00 00

px d p J x ' y)dpxdy (7)mij = - x ~y y

-00 -00oO

In terms of these spectral moments, it is well known that ( ~ N(0, Z)

where

m40 m3 1  m 2 2  -m 2 0  0 0

I I

m31 m22 ml3 -m 0 0
11 1

020m22 m13 m04 -m02 -0 0

-m 20  -mll -m02 m 0 0  0 0

0 0 0 0 m20 mll
I I

0 0 0 1 0 im 1 1  m 02

F 1 0

S00 0 (8)

S 0 S
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To derive the distribution of peak heights, consider the area of the

x-y plane dA = (x, x + 6x), (y, y + 6 y) where we have at some point

(x0 , y0 ) in dA

5 = 5 (x 0 1Y0 ) = 0 1= t 1 (x 0 , Y0 ) 5 0

6= 6 (x0 Y0 ) = 0 3 = 
3 (x 0 ',Y0 ) 5 0

t2 = t2(x0 ' Y0)

2
t1 3 -2 0

The region where the restrictions on 1 t2, and t3 are satisfied

is denoted V.

We wish to define the conditional density function

p(4t 5 = 0,1 6 = 0,( 1 ,Q129 3 )EV) = p(41 at a summit)

We proceed with a "horizontal window" limiting argument as presented

in Kac and Slepian (ref. 8) since we desire ergodic properties of this

pdf to hold in the plane (x, y). Thus

p( 41 summit)

dA - 0 S 5 6 1u "6d5d 6 dd 2 3

00

u5 u6
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where (15 , u 5 ), (16 , u6 ) are lower and upper limits on t5 and 6 m-
posed by the conditions

S5 ' 0 in dA, 5 (x0 , Y0 ) = 0

and

S6 ' 0 in dA, 6 (x0 , Y0 ) = 0

Now 5 = at/ax and 6 = at/ay so that

d 5c 6 J dxdy

where

JI = lI13 - 2I

Thus p(t 4 1 summit) is also given by

lim L Y}
lim O -- ' P(" "/ 6)d x d y d1 id2dg 3

6x -0 V

fJ 6 1 Pt 6)dxd d id2dt3 d 4

(9)

The limit is undefined as 6x y - 0 since the ratio approaches 0/0.

Use L' Hospital's rule with respect to 6x and 6y, noting that
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aS P(a 16  t 6 )dxdyj()

a~xa y s of- (0, 0)

limr
6 x - 0 p(Il2l 3l 4,6x, 6y)= p(l 2

6y - 0

to obtain

F p$1 2'1 4, 0 01

p(t4 1summit) =  o - 1

j I PiQ 1t 2, t 3, t 4, O, O)dt i (1V
1 3-I1 P( 2, 3'4'0'0)dl1

V

Note that

1 -Q/2
P( 11 2q 3l 4,  0) - e

2A 4

where
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1

Q= (1' 2'3' 4) T m00 3 (10)

E4

A = m0 2 m 2 0 - m =det
2 02 20 11 eS

F L
A 4 

= det T m0

Nayak (ref. 6) has also presented an argument which concludes that

00

Dsum = L i Jlp( 1 , 2 , 3 , 4 ,0,0)d(Id 2 dj d3 4
_V

(11)

And hence, the normalizing factor in equation (9) is simply Dsum*

The only problems remaining are the evaluation of Dsum and
To

Pp(Q*)dt*.

To this end, let
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m40 m31 m22 -m20

- 1  m3 1  m22 m13 -m11 F 1(12)

m22 m 1 3  m 0 4  -m 0 2  m 00

-m 2 0  -mll -m 0 2  m00

Using some results about inverses of partitioned matrices (Graybill,

ref. 14)

- -1
F 1 -F-11 m T00 F-

m 00

R=

-1 T F 1 T ll M00 -T F-1
m00 m00 (13)

R11 R 1 2

R21 R22

let

Then the quadratic form Q of equation (10) is given by2(3

Then the quadratic form Q of equation (10) is given by
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(s 4) R ( = t sR11tS + + sR124 + 4R 2 1 s + 4R22 4

= TsR 1 1 s + 2t T(R 1 2 t 4 ) + 4R22 4

= sR11s + 2tsR 11 R R 1 2 4) + (TR 2 1R1

x R 1 1 (RR 1 2 4) + 4R22 4

=s + R 1 2 % ) R 1 1  + R R1 2 4

4+ 2 - R 2 1RjtR12 > 4

(t-1-

(let z = -RR1 2 1 4)
T R 1 RT1, R1 2

= (S - z)1 2 t (s - z) + 1 4

m 0  mOO

since (R 22 - R2 1RR 1 2 ) - m 0 0
sne( R_ 1 RO

Now

11 T -1=F -F 11 (TF-11 m 1oo F = F' -cF It TF1
F- 1- =F - F l  F-1-m 0mOO
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where c TF-11 - m 0 0)-1

And

1-

-- 1 R1 1 T _- 1 T F-11 7

m00

= - T F-11)

S+ 1

m00

Thus

= -l 1 T F-14

mOO

1

t ( m 0 )T (F cF 11TF 1) (s m 0 (14)

= +-1/

mOO

Forand h ene have

4N(F)

SmO

Thus

(s - z)TRll1 s - z)

4 -1 -1 TF -14= - 1 F - cF-1 F (s (14)

mOO mOO

For fixed (4 we have

Ss ~ N(O, F)



25

and hence

t44W = s -N ( , F
m00 00

The determination of the pdf of the height given we are at a summit

thus reduces to the problem of evaluating

T - - 1 T -1
2 -(1/2)(ts 4)T (F -cF 11 F )(s()

f13 2 e d( (15)

V

where

-m204 4
S- 1 - -m11 (16)

m00 m00O-m02

There is, in general, no closed form expression for evaluating this

integral. This can be seen from equation (15) which shows the integral

to be related to the expectation of a function of normal r. v. 's over a

conical region of the space. In fact, the particular conical region is a

cone generated by a ray rotated around the line 1 = t 3 with t

and Z3 both negative. The angle of the ray with 1 = 3 is 45 .

From this representation we can see that the point g will intro-

duce asymmetry. There is a special case of the process we are con-

sidering which retains enough symmetry so that the integral can be

evaluated as a closed form. The special case is when the surface is

isotropic.
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Isotropic Processes

An isotropic random surface is one in which the probabalistic be-

havior of the surface, along a profile observed at an angle 8, is inde-

pendent of 8. In particular, this implies that

m 2 0 = m 0 2 = m 2

m 1 1  m1 3 = m31 = 0

m00 = m 0

3m 2 2 = m 4 0 = m 0 4 = m 4

Thus, for an isotropic process, we have

- m4  i -
m4  0 4 0 0 -m 2

3,
I I
I I

m 40 - 010 0 0

3 I
I I
II

R-1 m 4  i(17)
0 m4 0 0 -m23 1 I

0 0 0 im 0 0
I I
II

0 0 0 i 0 m2 0
- -------- -- - -H--

-m 0 -m 2 i 0 0 m
2 2 0
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Under the isotropy assumption, the integral of equation (15) can be

evaluated analytically (e. g., Nayak, ref. 6) to obtain

C 2 - 1/2
-~ 7 - 3(2a - 3) + 32 [e -f1/2(Q )2] +0

-1/2 2* +
x (t*)2 -1 + 7 La ] exp- a( )]+<( j (18)

L 2(a -1

where

41/2
m 0 a

mom4

2
m

2

o 3 - 1/2 

2(2a -3)

a - 1/2
2(a 1)(2a - 3)

2a1 2ay - 3
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It may be noted that the properties of an isotropic random surface

may be estimated from the statistics of a single profile measured

along any direction in the plane. This is not true for non-isotropic

surfaces, however.

The surface of a ball may reasonably be assumed to be isotropic

because of the way in which they are finished. Hence, when two balls

are in contact, the composite process will also be isotropic. This is

the case considered in reference 1 and Nayak's (ref. 6) results are

applicable.

From the way in which ball bearing raceways are finished, how-

ever, one would expect the surface to have grooves and ridges

elongated in the direction of grinding. This can be visually verified

in some instances. The composite surface process resulting from a

ball rolling in a raceway is unlikely to be isotropic. To allow for analy-

ses involving balls rolling in raceways, we now consider methods for

estimating the spectral moments mij so that equation (5) may be used.

DETERMINATION OF SPECTRAL MOMENTS

The use of equation (5) to estimate Tc depends upon the ability to

numerically evaluate Dsum and p(~ ). These quantities, in turn, de-

pend upon the spectral moments mij of the composite process defined

by the sum of the individual surfaces. We outline a method of sampling

the individual surfaces of the ball and raceway along selected profiles

obtained by use of a profilometer. We begin by discussing methods of

estimating the moments along one-dimensional profiles. We then use

certain of the results of Longuet-Higgins (ref. 3) which relate profile

one-dimensional moments to the two-dimensional moments of the en-

tire surface.

Estimation of Profile Moments

As indicated, the actual surfaces are sampled in a one-dimensional

manner with a profilometer. The usual method is to draw a fine-
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pointed stylus across the surface and obtain an analog record of the

relative surface height along the profile. This analog record may

then be digitized and analyzed on a digital computer. There are three

possible methods of analysis.

1. Numerically compute the sample one-dimensional spectrum by

use of a Fourier transform method (refs. 15 and 16). The moments

of the spectrum may then be numerically calculated by quadrature.

This method is relatively straightforward and requires no further

discussion.

2. Count the number of relative extrema (maxima and minima)

and the number of zero-crossings of a profile sample. If we let

Dz = density of zero-crossings

De = density of extrema

-2=a = estimated variance of process

Then it can be shown that estimates for the moments can be defined as

-2m0 = a

i 2-2 2
2 z

(19)
and

m 4 u4 D 2 D 2""14 =  7T u 'D21)

Naynk (ref. 6) presents a more complete discussion of this method and

also indicates a method by which Dz, D e, and &2 can be obtained

directly from the analog relative surface height record by electrical

devices.

3. Assume some physically realistic but tractably simple family

of analytical models for the autocorrelation function. Numerically

estimate the autocorrelation function from the digitized profile record

via Fourier transform methods. Find the best-fitting member of the
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family of autocorrelation functions (i. e., estimate the unknown param-

eters) and estimate the moments via the well-known relationships

(Cramer and Leadbetter, ref. 7)

m- R(0)0

-1(2
m2 -1 R(2)(0) (20)

-2

m 1 R (4)(0)
&2

m4-Y

This method requires further development.

Much of the book by Cramer and Leadbetter is devoted to the con-

ditions under which these moments (and, hence, derivatives of R(T)

at T = 0) exist, and the relation of these moments to analytical prop-

erties of random processes. Of par~ticular interest is the relation of

the moments to such things as the density of zero-crossings and the

density of extrema. We refer the reader to Cramer and Leadbetter

for full discussion of these topics and limit ourselves to one principal

result. This result is that the i t h spectral moment exists if and only

if R(i)(T) exists and is finite at T = 0. If the second spectral moment

is infinite, then the expected number of zero crossings in any finite in-

terval is infinite.

It is thus interesting to note that some authors (refs. 17 and 18)

have proposed exponential or exponential-cosine autocorrelation

functions as realistic models for surface roughness. Bendat (ref. 10)

has also proposed these as being realistic in many other applications.

The major theoretically desirable property of a Gaussian random pro-

cess is that an exponential autocorrelation function implies that the

process is Markovian.
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Consider the following family of autocorrelation functions

R() = e iT a (21)

where a = 1 yields an exponential correlation function.

Then

R(1)(T) = (22)

-e I I -1 > 0

R(2)(T)= -e IT (a {)j -2+ (IIa01 2  (23)

The various values of R(1)(0) and R(2)(0) are given in the following

table. From these values, we see that for a > 2 the expepcted number of

crossings at any finite level in any finite interval of time is zero. If

a< 2, then the expected number of crossings of any finite level in any

finite interval of time is infinite (or undefined, but undefined in such a

manner that we would expect the number of crossings to be infinite).

These properties are difficult to accept from physical considerations.

a R()(0- ) R(1)(0 + ) R(2)(0)

a>2 0 0 0

a= 2 0 0 -2

2>a>1 0 0 -0

a = 1 +1 -1 Undefined

a <1 +00 -o Undefined
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In order to resolve this point we propose the following class of

models. Let

p(T) =+ al -2 + a2 -4 + .. +anr 2 n (24)
p(i)=1+al2 +a 2 4+.+ar (4

q(-) = 1 + b1-2 +b 2 -4 +. . . + bm T2m (25)

where

m-n=k> 0, bi.>0, bm >0
1-m

and

R() - p(T) (26)

Doob (ref. 19) has considered a similar approach to the definition of

spectral densities. This representation seems reasonable as an ap-

proximation to the exponential-cosine class for the following reasons

1. Since p(T) and q(T) are both even, we have the required sym-

metry.

2. Since the degree of q is larger than the degree of p, and q

is always positive, R(T) will be damped and R(r) - 0 as T - oo.

3. If n is sufficiently large, and the roots of p are equally

spaced, R(r) will have the same qualitative behavior as an exponen-

tial cosine function.

4. Since R(J)(0) = 0 for j _ 2m, all spectral moments of order

2m or greater are equal to zero.

Multiple Profile Analysis

Once the spectral moments of the profiles of the composite surface

are obtained along several profiles we wish to use them to estimate the
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two-dimensional moments. Let

mn, = the nt h spectral moment of the one-dimensional

profile taken at an angle of & from the x-axis of

the (x, y) plane.

Longuet-Higgins (ref. 3) has shown the following relationship to be true

n

mn, 0 mn-i, i cosn-i(0)sini(0) (27)

1= n

Suppose that n profiles are taken at the (distinct) angles Oi,

i = 1, n. From these profiles we thus obtain

m0,i = m0 0  (i = 1,n) (28.1)

m2 0i = m20cil + m11ci2 + m 0 2 ci 3  (i = 1,n) (28.2)

m4) 0 i =m 4 0dil + m31di 2 + m 2 2 di 3 + ml 3 di4 + m 0 4 di 5  (i = 1, n)

(28.3)

Nayak (ref. 6) claims that three profiles taken at three distinct directions

is sufficient information to determine the quantities Dsum and p(~ ).

This seems unlikely to be true for the following reason.

Longuet-Higgins (ref. 5) has shown that many of the gometrical prop-

erties of a random surface are determined by the so-called invariants.

th
Zerot h order invariant:

0 = m 0 0
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Second order invariants:

S1 = m0 2 + m 2 0

S2 = m20m02 - m2 = det S

Fourth order invariants:

F 1 = m 4 0 + 2m 2 2 + m 0 4

F2 = m 0 4 m 4 0 - 4m3m31 + 3m 2 2

F 3 = (m 4 0 + m 2 2 )(m 0 4 + m 2 2 ) - (m 3 1 + m 1 3 ) 2

F 4 = det F

Since there are four invariants of order four, it may be possible that
Dsum and p(*) may be expressed in terms of these four invariants.D sum andp()mabeepesditemofteefuinrat.

In such a case it would be sufficient to take four profiles and solve equa-

tion (28. 3) for the two-dimensional moments or the required invariants.

It is clear, however, that five distinct profiles will be sufficient since

there would then be five equations to be solved for the five unknown fourth

order two-dimensional moments. The five equations for the zeroth and

second order moments may be solved by least squares. If more than five

profiles are obtained, then the fourth order moment equations may also be

solved for by least squares.

Prefiltering of Signals

Whitehouse and Archard (ref. 17) have discussed briefly the presence

of very low and very high frequency components of the spectrum and the

resultant effect upon surface analyses. This deserves some further dis-

cussion in relation to the theory of electrical contact occurrences as de-

veloped herein.
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We first consider high frequencies. A typical profile that might result

from a surface which contains primarily low-frequency components super-

imposed upon a signal of high frequency with small amplitude is illustrated

in figure 6. It may easily be recognized that the high-frequency component

contributes very heavily toward the number of "summits" contained in the

signal. Not all these "summits" have physical significance with relation

to electrical contacts, however. We may assume that since the asperities

on the surface undergo eleastic deformation, the small asperities will dis-

appear when the larger asperities come into contact. Thus, the data re-

corded for description of the surface should be filtered so as to remove

the high-frequency component.

Figure 7 presents a typical profile that might result from a surface

which contains primarily medium-frequency components superimposed on

a signal with low frequency and low amplitude. In this case the low-

frequency component will be reflected as very long and smooth "hills"

and "valleys." But if these are quite large with respect to the Hertzian

area, it is more reasonable to assume that the bearings will roll up over

the hills and down through the valleys rather than cause very long contact

and no-contact occurrences. Thus, the data recorded for description of

the surface should also be filtered to remove such low-frequency compo-

nents.

Since there are little data available in sufficient detail, it is not clear

that this problem need arise in practice. The most serious problem is

with the high-frequency signals, since they contribute most to the number

of summits. Whitehouse and Archard (ref. 17) present some evidence that

at least some surfaces may be described as in figure 6. In addition, they

also comment that in some instances the smaller peaks undergo plastic

rather than elastic deformation and hence disappear rapidly with use.

This lends support to the procedure of filtering out the high-frequency

components and also presents a potential means for determining where

the high-frequency cutoff point should be.

In any event, what may be considered "high" frequencies and "low"

frequencies is a subject for further research.
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CONCLUDING REMARKS

The basic problem under consideration is that of describing the be-

havior of two rolling surfaces separated by a thin film of lubricant. We

discuss a means of determining the mean film thickness from experi-

mentally obtained electrical contact measurements. We are specifically

concerned with rolling surfaces such as occur in ball bearings.

The ball surfaces are represented as Gaussian random processes.

The development first considers the situation where contact occurs along

a one-dimensional line segment. Both exact and approximate relations

are developed between the mean film thickness and the amount of elec-

trical contact. The development is then extended to the situation of

contact over an area. An approximate relationship between mean film

thickness and electrical contact is developed.

The approximation presented involves the determination of the proba-

bility density function of peak heights on a random surface and the den-

sity of such peaks.

One method of obtaining surface roughness information is to observe

relative surface height along one-dimensional profiles. We discuss the

estimation of spectral moments of these one-dimensional processes. We

then discuss a method of combining this information from several profiles

in different directions to compute'the spectral moments of the two-

dimensional process.

We conclude with a brief discussion of the need for filtering the pro-

file processes in order to obtain better agreement with the contact process.
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